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Cubic zirconia exhibits a soft phonon mode �X2
−� which becomes dynamically unstable at low temperatures.

Previous ab initio investigations into the temperature-induced stabilization of the soft mode treated it as an
independent anharmonic oscillator. Calculations presented here, using the self-consistent ab initio lattice-
dynamical method to evaluate the phonons at 2570 K, show that the soft mode should not be treated indepen-
dently of other phonon modes. Phonon-phonon interactions stabilize the X2

− mode. Furthermore, the effective
potential experienced by the mode takes on a quadratic form.
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I. INTRODUCTION

Ab initio studies of the thermodynamics of solids rely
heavily on the quasiharmonic approximation for describing
the phonons.1 The approximation treats the crystal lattice vi-
brations as harmonic at a sequence of volumes and, based on
the frequencies usually calculated with the direct force
method2,3 or the linear-response method,4 constructs, e.g., the
free energy for each volume. The free energy can then be
interpolated to describe the temperature- and volume-
dependent thermodynamics. In numerous examples quasihar-
monic theory has successfully predicted the low-temperature
phonons2,5–8 as well as thermal expansion, heat capacity, and
thermal dependence of elastic properties.3,9,10

The success of quasiharmonic theory rests heavily on the
absence of strong phonon-phonon interactions and of dy-
namical instabilities. Figure 1�a� illustrates a schematic
potential-energy surface of a two-mode system in which both
phonon-phonon interactions and dynamical instabilities are
absent.

Some systems exhibit one or several dynamically unstable
phonon modes, i.e., modes with imaginary harmonic
frequencies.11 Examples of such systems include the body-
centered-cubic �bcc� phase of groups IIIB and IVB metals,12

cubic zirconia,13 and high-pressure bcc phase in Fe.14,15 The
unstable modes do not contradict experiments, which only
observe these structures at high temperatures, where the
quasiharmonic approximation cannot be applied. But the un-
stable modes do pose a problem for the theoretical evaluation
of thermodynamic quantities.

Recent years have seen several attempts to deal with dy-
namical instabilities while retaining the convenience of keep-
ing the phonon modes independent of one another,16–18 a
situation schematically illustrated in Fig. 1�b� by a two-mode
system with one stable and one unstable mode. Assuming
that the unstable phonon mode’s �nonquadratic� potential re-
mains independent of the other modes, these recent attempts
approximate the potential as either a parabola combined with
a Gaussian or as a quartic function, which leads to an ana-
lytical solution for the independent anharmonic oscillator.
The solution provides a real frequency above a critical tem-
perature Tc as well as the mode’s contribution to the canoni-
cal partition function, which allows the evaluation of thermo-
dynamic properties. The justification for this approach relies
on the interactions between phonons remaining weak at tem-
peratures up to the critical temperature.

Figure 1�c� illustrates a schematic potential-energy sur-
face for a two-mode system in which the modes interact
strongly and the independent anharmonic oscillator approxi-
mation cannot be justified. Here the simultaneous presence
of different phonon modes creates geometric disorder, i.e.,
entropy which stabilizes the unstable mode.19 Such entropy-
driven stabilization has been studied, e.g., by Ye et al.,20 who
demonstrated by means of perturbation theory that the dy-
namical stabilization of the high-temperature bcc phase in Zr
is the result of phonon-phonon interactions.

The work presented here investigates the role of phonon-
phonon interactions in the high-temperature stabilization of
cubic zirconia �ZrO2� �space group Fm3m�. Cubic zirconia
shares several physical properties with diamond �although its
use as a surrogate is not always appreciated� such as visual
similarity, large hardness, and high melting temperature. In
particular, neither cubic zirconia nor carbon in the diamond
structure is a ground-state structure.

At ambient pressure, zirconia favors the cubic phase
above temperatures of 2570 K. Below this temperature, the
material favors the tetragonal structure �space group
P42 /nmc� down to 1400 K, below which a monoclinic phase
emerges as most energetically favorable. At low tempera-

FIG. 1. �Color online� Schematic potential-energy surfaces for
systems with two vibrational modes. The solid black curve illus-
trates the potential seen by the second mode for a fixed finite am-
plitude of the first mode. In �a�, both modes are independent and
stable. In �b�, the second mode is unstable and independent of the
first mode, i.e., always sees the same potential. In �c�, the second
mode is not independent of the first mode; for small amplitudes of
the first mode, the second mode is unstable; for a large-enough
amplitude of the first mode, the second mode becomes stable.
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tures, ZrO2 in the cubic phase is not only energetically unfa-
vorable; it is also dynamically unstable.

The dynamic instability appears in the quasiharmonic ap-
proximation as imaginary frequency for the X2

− phonon
mode.13,21,22 Previous studies13,22 treat this unstable phonon
mode as independent from other modes, i.e., neglect the ef-
fect of other phonon modes. The work presented here shows
that the high-temperature dynamics of the X2

− mode strongly
depends on phonon-phonon interactions. Not only do other
phonons stabilize the X2

− phonon mode, but they make the
potential it experiences at high temperatures quadratic.

II. DETAILS OF THE CALCULATIONS

The recently developed self-consistent ab initio lattice-
dynamical �SCAILD� method23,24 serves as a framework for
the present study. The approach simulates a crystal with all
phonon modes present simultaneously and thereby includes
the interactions between them. The SCAILD method re-
sembles the frozen-phonon method25 in the use of supercells
with atoms displaced according to the phonon mode eigen-
vectors. However, the two methods differ in four significant
points:

�1� The frozen-phonon method displaces the atoms ac-
cording to only one single phonon at a time, whereas the
SCAILD method displaces the atoms simultaneously based
on all phonons with wave vectors k found to be commensu-
rate with the supercell. The presence of all phonons intro-
duces geometric disorder, i.e., entropy, which in turn affects
the phonon frequencies.

�2� The frozen-phonon method extracts each phonon
mode’s frequency from the dependence of the total energy on
the mode’s amplitude, whereas the SCAILD method obtains
the frequencies based on the calculated Hellman-Feynman
forces by projecting out each mode’s restoring force.

�3� The frozen-phonon method evaluates each frequency
once, whereas the SCAILD method relies on an iterative
scheme to obtain a self-consistent phonon spectrum.

�4� In the frozen-phonon method the amplitudes of the
atomic displacements are chosen by hand, whereas in the
SCAILD method the amplitudes depend on temperature and
the phonon frequencies.

Thermodynamics dictates at a given temperature T the
population of each phonon mode s and accordingly the
mode’s amplitude Aks

� based on the mode’s frequency �ks;
i.e.,

Aks
� = ���Dks

� D−ks
� �

M�

= �� �

M��ks
�1

2
+ n���ks

kBT
�	 ,

�1�

where n�x�=1 / �ex−1�, M� denotes the mass of atoms of type
�, and Dks

� represent the canonic phonon operators. These
operators appear together with those for the canonical pho-
non momentum Pks

� in the harmonic Hamiltonian Hh

=
k,s,�
1
2 �Pks

� P−ks
� +�ks

2 Dks
� D−ks

� �.
As mentioned above, the SCAILD method excites all the

phonons with wave vectors k commensurate with the super-
cell. In the supercell the undistorted atoms sit at R+b�,

where R represent the N Bravais lattice sites of the supercell
and b� is the position of atom � relative to this site. The
excitation of phonons displaces the atoms, R+b�→R+b�

+UR�, where

UR� =
1

�N


k,s

Aks
� �ks

� eik�R+b��. �2�

�ks
� are the eigenvectors of the dynamical matrix. The dy-

namical matrix for each wave vector arises from the Fourier

transformation of the force-constant matrices �� ����R�,

D����k� =
1

�M�M��


R

�� ����R�e−ik�R+b�−b��� �3�

and satisfies the relation



��

D����k��ks
�� = �ks

2 

�

�ks
� . �4�

The SCAILD method alternates between displacing the
atoms based on phonon frequencies and evaluating the pho-
non frequencies from ab initio calculated forces acting on the
displaced atoms. For the first iterative step, the forces stem
from a direct force method calculation �see, e.g., Refs. 2 and
3�. The phonon frequencies and eigenvectors corresponding
to commensurate k vectors are used to calculate a set of
atomic displacements UR through Eqs. �1� and �2�. A first-
principles calculation provides the Hellman-Feynman forces
acting on the displaced atoms, and new phonon frequencies
are obtained from the Fourier transform Fk

� of the forces

�̄ks = �

�

�ks
� · Fk

�

Aks
� M�

	1/2

. �5�

In order to make the sampling of the phonon frequencies
more efficient, the symmetries of the different k vectors are
restored for each iteration i by

�ks
2 �i� =

1

mk



S�S�k�
�̄S−1ks

2 �i� , �6�

where S�k� is the symmetry group of the wave vector k and
mk is the number of elements of the group. The symmetry-
restored frequencies �ks�i� , i=1, . . . ,NI of all previous itera-
tions provide a new set of frequencies �ks

2 �NI�

�ks
2 �NI� =

1

NI


i=1

NI

�ks
2 �i� , �7�

which lead to a new set of atomic displacements UR�

through Eqs. �1� and �2�, which in turn serve to calculate a
new set of forces. Additional details of the method can be
found in Refs. 23 and 24.

The forces are calculated using the VASP package.26 Ap-
plying the local-density approximation �LDA�, the exchange-
correlation energy was evaluated with the Perdew-Wang
parametrization27 of Ceperly-Alder electron-gas data.28 The
projector-augmented wave �PAW� potentials used energy
cutoffs of 480 eV. The Zr�4s ,4p ,4d ,5s� and O�2s ,2p� levels
were treated as valence electrons. All calculations used the
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experimental lattice constant a=5.09 Å.29 The effects of su-
percell size were investigated with simulation cells contain-
ing 24 atoms �2	2	2 supercell�, 81 atoms �3	3	3 su-
percell�, and 192 atoms �4	4	4 supercell�. Convergence
with respect to electronic k points required Monkhorst-Pack
k-point grids of 7	7	7 �for the 24-atom supercell�, 6	6
	6 �for the 81-atom supercell�, and 5	5	5 �for the 192-
atom supercell�.

Born effective charges30,31 were not used in the calcula-
tions presented in this paper. Therefore, no splitting between
the optical longitudinal and optical transverse modes
�LO/TO splitting� was obtained.

III. RESULTS

Figure 2 shows the results of the finite temperature
SCAILD calculations for the cubic structure of ZrO2 together
with the results obtained with the direct force method calcu-
lations. For all supercell sizes, the direct force method cal-
culations exhibit the same dynamical instability at the X �k
= 2


a �1,0 ,0�� high-symmetry point. This lattice instability of
the longitudinal X2

− phonon mode corresponds to the move-
ment of the oxygen atoms along the direction of the phonon
eigenvectors eks

� = �1,0 ,0�. Figure 3 depicts the atomic dis-
placements corresponding to the X2

− phonon mode.
The right column of Fig. 2 shows the phonon dispersions

resulting from the finite-temperature SCAILD calculations.

Most importantly, the X2
− phonon mode becomes stable and

independent of supercell size. The frequency of the X2
− pho-

non mode takes on the values of 5.89 �24 atoms�, 8.78 �81
atoms�, and 6.68 THz �192 atoms�, which suggests a strong
dependence on supercell size.

The convergence of numerical values for the frequencies
with respect to supercell size cannot be established for the
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FIG. 2. The phonon dispersion of cubic ZrO2 calculated with a 24-atom supercell �top row�, an 81-atom supercell �middle row�, and a
192-atom supercell �bottom row�. The solid �and dashed� lines represent the first-principles phonon calculations. The left column �a� shows
the results from the direct force method calculations �with the negative axis convention used for imaginary frequencies�; the right column �b�
shows the finite-temperature SCAILD calculations. The dashed lines on the left-hand side of the figure indicate imaginary phonon frequen-
cies obtained in the direct force method calculations. At 2570 K these modes become stable, i.e., real, by including interaction between the
phonons.

FIG. 3. �Color online� Schematic figure of the atomic move-
ments corresponding to the soft longitudinal X2

−-point phonon mode
of cubic ZrO2. Here two unit cells of ZrO2 are depicted with large
red spheres representing oxygen atoms and small white spheres
representing zirconium atoms. The green arrows, here pointing par-
allel to the �100� direction of the crystal, indicate the directions of
the displacement of the oxygen atoms corresponding to the X2

− pho-
non mode. �The Zr atoms are not displaced by this mode.�
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192-atom calculation. As in the direct force method calcula-
tion, the SCAILD method only evaluates the actual frequen-
cies for phonon modes with commensurate wave vectors and
interpolates the remaining frequencies plotted in the disper-
sions, which imparts some of the dependence on supercell
size. The additional sensitivity to supercell size for the
SCAILD calculations stems from the addition of phonon-
phonon interactions, which depend on the phonon modes ac-
tually present in the supercell, i.e., only those with commen-
surate wave vectors contribute to the phonon-phonon
interaction. Especially for small supercell sizes this implies
that an increase in supercell size strongly influences the num-
ber of modes with which each phonon can interact. This
sensitivity appears in the calculated values of the X2

− phonon
mode; these frequencies differ least between the 24-atom and
192-atom calculations because these supercells also share
more commensurate wave vectors. The large discrepancy at
the W high-symmetry point appears because the W point
� 1

2 , 1
4 , 3

4 � is not a part of the commensurate k-point set in the
24-atom calculation.

The sensitivity to supercell size also appears in the calcu-
lated phonon density of states �DOS� shown in Fig. 4 for the
three supercell sizes. Although the commensurate wave vec-
tors of the 24-atom supercell also appear in the 192-atom
supercell, the two DOSs show striking differences. The DOS
of the 24-atom calculation is considerably broader and it also
exhibits a peak at high frequencies that disappears in the
DOS of the 192-atom calculation. Larger supercells, needed
to establish convergence of the phonon spectrum, currently
exceed available computational resources. The sensitivity to
supercell size impedes convergence of the frequencies’ nu-
merical values, but it compellingly suggests that the stabili-
zation of the X2

− phonon mode stems from strong phonon-
phonon interactions; i.e., it cannot be treated independently
from other phonon modes.

The effects of the other phonon modes stabilizing the X2
−

phonon mode can be seen by contrasting the effective poten-
tial experienced by X2

− phonon mode at low and high tem-
peratures. Figure 5�a� shows the frozen phonon, i.e., low-
temperature potential-energy curve of the soft mode. The

dynamical instability of the ZrO2 cubic phase is reflected in
that the cubic structure sits at a local energy maximum.

Figure 5�b� shows the projections 
�Fk
��k

� of the Fourier-
transformed forces �taken from the iterations of the 2750 K
calculation in the 24-atom supercell� plotted against the dis-
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FIG. 4. �Color online� Phonon density of states for cubic ZrO2

calculated with the SCAILD method. The dashed blue curve corre-
sponds to the 24-atom supercell calculation, the thin red curve to
the 81-atom supercell calculation, and the thick black curve to the
192-atom supercell calculation.
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FIG. 5. �Color online� Calculated potential experienced by cubic
zirconia’s X2

− phonon mode as a function of oxygen atom displace-
ment in the independent phonon approximation and at 2570 K. �a�
The calculated potential-energy curve has a local maximum at
Aks

� /�N=0, reflecting cubic zirconia’s lack of stability at low tem-
peratures. �b� The calculated projected force in 24-atom supercells
acting on the X2

− phonon mode at 2570 K reflects cubic zirconia’s
stability at high temperatures. Empty symbols represent results
evaluated for amplitudes either determined by Eq. �1� �empty
circles� or fixed at values evident from the figure �empty diamonds,
triangles, and squares�. Filled red circles denote the geometrical
mean values of the projected forces from each of the five sets of
calculations, and the width of the error bars are two times the
square root of the mean-square deviation of the projected forces
relative to the geometrical mean values. The red dashed line plots a
linear fit Fp�Aks

� /�N� of the mean values of the projected forces

with �=− 1
2

dFp�x�
dx =17.7 THz2. �c� Based on the linear fit, the pho-

non mode experiences an effective potential-energy curve �E
=M���Aks

� /�N�2 at 2570 K that is quadratic.
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placement of the oxygen atoms, i.e., against the amplitude of
the phonon mode given by Eq. �1�. Also shown are the pro-
jected forces for SCAILD calculations with the X2

− phonon
mode’s amplitude restricted to four specific numerical values
�0.05, 0.095, 0.15, and 0.225 Å�; all other phonon modes
followed the SCAILD scheme outlined above. The resulting
geometrical mean values of each of the five sets of iterations
deviate by roughly 4.3% from a linear fit

1

M


�

Fk
��k

�� = 2�Aks
� �8�

with �=17.7 THz2. The angular brackets � � denote the geo-
metrical mean value. The approximately linear relationship
between the restoring force and the amplitude suggests that
phonon-phonon interactions stabilize the X2

− phonon mode
around 2570 K by making its effective potential quadratic.

Figure 5�c� shows the potential calculated from the linear
relation �8�. The phonon frequency obtained from the curva-
ture of the resulting energy parabola, �ks=�2�=5.95 THz,
is consistent with the frequencies 5.89, 8.78, and 6.68 THz
obtained for the X2

− phonon mode by the respective unre-
stricted 24-atom, 81-atom, and 192-atom calculations.

Based on the small height of the energy barrier in the
potential-energy curve in Fig. 5�a�, the X2

− phonon mode
could sample both sides of the temperature-independent
potential-energy curve equally, i.e., it might “stabilize itself”
without interacting with other phonons. This would result in
amplitudes Aks

� 
0.18 Å. However, achieving such ampli-
tudes from Eq. �1� with a phonon frequency of 5.89 THz
would require a temperature T
6820 K.

IV. CONCLUSION

Ab initio calculations demonstrate that the dynamical sta-
bilization of cubic ZrO2 is entropy driven and can be as-
cribed to the interaction between the X2

− phonon and other
phonons of the crystal. This contradicts the assumption that
the phonons remain independent, which served to justify pre-
vious calculations that treated the unstable mode as an inde-
pendent anharmonic oscillator. The dynamical stabilization
of cubic zirconia by phonon-phonon interactions, as well as
similar results for the bcc phase of Ti, Zr, and Hf, suggests
that the same mechanism likely plays a key role in more
systems than previously assumed. Therefore, the calculation
of thermodynamic properties of such systems will require the
inclusion of phonon-phonon interactions, which will be pos-
sible with the SCAILD method once further developments
have been made to overcome the slow convergence with re-
spect to supercell size.

Furthermore, as a result of the phonon-phonon interaction
in cubic ZrO2, the effective potential experienced by the X2

−

phonon mode at temperatures near 2570 K becomes qua-
dratic. This quadratic form of the effective potential should
influence the details of experimental measurements of cubic
zirconia’s lattice dynamics.
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